EE 210 Fall, 2017/18 Dr. Blandford

Website: http://csserver.evansville.edu/~blandfor

Text: Alexander, Charles K, and Sadiku, Matthew N.O., <u>Fundamentals of Electric</u> Circuits, 6th ed., McGraw-Hill, 2017.

Reference: Nahvi, Mahmood and Edminister, Joseph, <u>Schaum's outlines of Electric Circuits</u>, 4th ed., McGraw-Hill, 2003.

Software:

1. LTSpice, This is available on the network in the labs and can be downloaded for personal use from

http://www.linear.com/designtools/software/ltspice.jsp

2. Matlab V.8.1.604 Release 2016b This is available on the network in the labs as the professional edition. If you want to use this on a home computer a student version is available for about \$100 dollars.

Lab Kits:

Each student is required to purchase a tookkit consisting of breadboard, oscilloscope probes, meter leads, etc. The kit is available from the Electrical Engineering Department Office. See Mrs. Vicky Hasenour in KC 266.

Course Structure:

This course meets from 8 to 10:15am on Tuesday and Thursday mornings. The course is taught in an integrated lab/lecture format. The lab portion of the course will be done in teams of two.

Notebooks:

Each lab team will keep a notebook in which all lab activity is recorded. This notebook will be periodically collected and graded. Notebooks are available in the department office.

Exams:

All exams are open book and open notes. Students may not share notes, books, or calculators during exams.

Reading Assignments:

Reading assignments for each class session are printed on the attached schedule. Each student is expected to have read the assigned material *before* attending class.

Grading:

This class has three hour exams, graded homework, graded projects, a graded notebook, two graded lab practical exams, and a two-hour comprehensive final exam. Unannounced quizzes over lab projects will be counted as part of the homework grade. The three exams will count 56%, the graded homework and the projects will count 20%, the notebook grade will count 5%, and the final exam will count 19%. Some of the design projects will be done in multidisciplinary teams. All students must pass the lab practical exam in order to pass the course regardless of exam grades. The lab practical may be repeated.

Contact Information:

Email: blandford@evansville.edu

Phone: 812-479-2291 **Office;** KC 266A

Final exam is Friday, December 8 at 4:30pm

EE 210 Fall 2017/18

EE 210	Fall 2017/18
Tuesday	Thursday
V	Aug. 24 Ch 1 pp. 3-23
	Intro and overview
	Charge, current, voltage, power and energy
	Lab 1:
Aug. 29 Ch 1-2 pp. 17-43	Aug. 31 Ch 2 pp. 37-64
The electric bill	Kirchhoff's Laws, Series and parallel resistive
Ohm's Law. Nodes branches and loops	networks
Kirchhoff's Laws	Lab 3:
Lab 2:	
Sept. 5 Ch 2 pp. 58-64	Sept. 7 Ch 1-2
dc meter movements and loading, Review	Hour Exam 1
<i>Lab 4:</i>	
Sept. 12 Ch 3 pp. 80-95	Sept. 14 Ch 3 pp. 95-110
Nodal analysis with current and voltage sources	Mesh analysis with current and voltage sources
<i>Lab 5:</i>	Analysis by inspection
	Lab 6:
Sept. 19 Ch 3-4 pp. 98-110, 126-137	Sept. 21 Ch 4 pp. 137-150
Analysis by inspection	Thevenin's Theorem
Linearity property, Superposition	Norton's Theorem
Lab 7:	Lab 8:
Sept. 26 Ch 4-5 pp. 148-157, 174-183	Sept. 28 Ch 5 pp. 183-197
Maximum Power Transfer	Summing and difference amplifier
Intro to Op amps. Inverting and noninverting	Lab 10:
amplifier	
Lab 9:	
Oct. 3 Ch 5 pp. 174-197	Oct. 5 Ch 3-5
Op amps, Review	Hour Exam 2
Oct. 10	Oct. 12 Ch. 6 pp. 214-231
Fall Break	Capacitors and inductors
	Lab 11:
Oct. 17 Ch.6 pp. 231-237	Oct. 19 Ch 7 pp. 252-263
Applications of capacitors and inductors in op	Source free RL and RC circuits
amps	Lab 13:
Lab 12:	
Oct. 24 Ch 7 pp. 263-282	Oct. 26 Ch 7 pp. 282-297
Impulse and step response of RC and RL circuits	First order op amp circuits
Lab 14:	Transient analysis and applications
	Lab 15:
Oct. 31 Ch 8 pp. 312-324	Nov. 2 Ch 8 pp. 324-334
Initial values, Source free series RLC circuits	Step response series RLC
<i>Lab 16:</i>	LT Spice simulation
	Lab 17:
Nov. 7	Nov. 9
Lab Practical	Review Ch 6-8
	Last day to withdraw with a W is Nov. 10
Nov. 14	Nov. 16 Ch 9 pp. 368-394
Hour Exam 3	Sinusoids and phasors
	Lab 18:
Nov. 21 Ch 9 pp. 385- 400	Nov. 23
impedance and admittance, the frequency domain	Thanksgiving
<i>Lab 19:</i>	
Nov. 28 Ch 10 pp.412-424	Nov. 30 Ch 10 pp.494-438
Nodal Analysis, complex numbers	Thevenin, LT Spice AC analysis
Thevenin's Theorem	
Dec. 5	
Course review	

Final exam is Friday, December 8 at 4:30am