
EE 354 Fall, 2013
Simulation Notes

1. Create a new project in µVision4 using AT89C51CC03 processor.
2. Enter the c-code that you want to simulate. Your c-code should use the A/D converter. Here

is some sample code which outputs the A/D converter to port 2.
//AtoDTest.c
#include <at89c51cc03.h>
//Takes the input from the A/D converter channel 0 and
// sends it to P2 and P3. Assumes P2 has D/A triggered
// by bit P4.0. P2 holds 8 MSBs.
void main (void)
 {unsigned char tmp;
 ADCF = 0x01; // P1.0 = ADC[0]
 ADCON = 0x20; // Enable ADC Function
 ADCLK = 0x00; // Prescaler to 0
 EA = 0; //Turn off interrupts
 while(1) // Loop Forever
 {ADCON &= 0xF8; // Reset ADC Channel Select
 ADCON |= 0x00; // Select ADC = Ch0
 ADCON |= 0x20; // Use Standard mode
 ADCON |= 0x08; // Start ADC Convert
 tmp = (ADCON & 0x10); // Get done bit
 while(tmp != 0x10) // Loop until complete
 tmp = (ADCON & 0x10);
 P2 = ADDH; // Send 8 MSB to P2
 P3 = ADDL;
 P4_0 = 0; // Low going pulse to D to A
 P4_0 = 1; // write line
 ADCON &= 0xEF; // Clear ADEOC = 0
 }
 }

3. To simulate a sine wave on the A to D input
File → New
Enter the following simulation code

//
// Generate Sine Wave Signal on AD Channel 0
//
signal void ADC(void)
 {float amplitude; // peak-to-peak voltage
 float frequency; // output frequency in Hz
 float offset; // voltage offset
 float duration; // duration in Seconds
 float val;
 long i, end;
 amplitude = 2.3;
 offset = 1.0;
 frequency = 100; //Change this to whatever is needed
 duration = 0.1;

 printf ("Sine Wave Signal on AD Channel 0.\n");

 end = (duration * 100000);
 for (i = 0 ; ; i++)
 {// Runs signal continuously
 val = (float)i*(0.00001);
 AIN0 = __sin(2*3.14159*frequency*val) + offset;
 swatch (0.00001); // in 10 uSec increments
 }
}

File → SaveAs Save this file as Debugger.ini in the project file.
4. Click on Project → Options for Target1 → Debugger tab
5. For the initialization entry click on the button with "…" on it and locate the Debugger.ini file
you just saved.

6. Under the options dialog you must also specify that you want a hex file produced if you are

going to implement this program on your board.
7. Click OK and build project
8. After successful build run debugger Debug → Start/Stop Debug Session
9. In Debugger: View → analysis window → Logic analyzer Window
10. In Logic analyzer click on SetUp. Push Insert key and enter AIN0 as the signal name. The

signal range should default to 0 to 5 volts. Your setup window should look like that shown
below. You may also want to enter other signals. For example, if you want to see Port 2,
push the Insert Key and enter port2.

11. Close the setup window.
12. At the bottom of the screen there should be a Output window. If not use the View menu to

bring it up. The output window will look like that shown below. Type ADC() on the
command line as shown and push return.

13. Run the simulation for a few seconds and then stop it. Look at your output in the logic
analyzer simulation window.

Setup Window for Logic Analyzer

Output window for simulation. enter ADC() on the command line and push Enter

Logic simulator output window. ADC on top, port2 on bottom.

