
EE 354 Fall 2016
Notes on timer operations

The AT89C51CC03 has two general purpose timer counters each of which is 16-bits long. Both
count upward and both can be used in either a polling or an interrupt mode. The AT89C51CC03
has an additional timer (Timer 2) which is used for setting baud rate for serial communication.

Figure 1

Clock signals for the AT89C51CC03.

The clock labeled CPU Core Clock drives the CPU and it's speed can be changed using bit
CKCON.0. If this bit is 1 the CPU is said to be in the X2 mode and the CPU is clocked at the
same rate as the crystal frequency. If CKCON.0 = 0, the CPU is in the standard (STD) mode.

There are three clock signals which drive the timers: FT0 Clock, FT1 Clock, and FT2 Clock. In
Standard mode (NOT double clocked). Each of these can run at either the clock frequency or at
½ of the clock frequency depending on a bit in CKCON. The timer clock frequency is
independent of the CPU core clock frequency.

For the board being used in class there is an external crystal at 28.2076MHz. If CKCON.1 = 1,
timer 0 runs at 28.2076MHz/2. If CKCON.1 = 0, timer 0 runs at 28.2076 MHz.

Mode registers
There are four registers associated with each timer/counter. These are the timer control register
TCON, the timer mode register TMOD, and the 16 bit counter register which is divided into to 8-
bit registers called TLX and THX where X is 0, 1, or 2.

TCON
The bit assignments for TCON are shown in Figure 2. TFX is the timer overflow flag. This is
the carry bit that is set when the timer counts past it's register limit and overflows. TRX is the
timer run bit. This bit must be set to 1 to get the timer to run.

Figure 2

Timer Control register TCON

TMOD
The timer mode register bits are shown in Figure 3. TMOD is a single register where the upper
nibble contains the mode control bits for Timer 1 and the lower nibble contains the mode control
bits for Timer 0.

Figure 3

Timer mode register.

For Timer 0 bits 0 and 1 control the timer mode so that there are four modes as shown in the
Figure 3. Timer 1 has a similar set of mode bits but for Timer 1 the mode bits are bits 4 and 5 of
TMOD.

T0M1 T0M0 Mode description
0 0 13-bit counter timer for 8048 compatibility
0 1 16- bit counter timer
1 0 8-bit counter timer with auto-reload. T0H is loaded

automatically into T0L when T0L overflows.
1 1 Dual 8-bit counter timers. (see user's manual)

Figure 4

Mode select bits for Timer 0
Bit 2 for Timer 0 and bit 6 for Timer 1 in TMOD are called the timer source bits and determine
whether each timer is used as a counter or a timer. Setting this bit to 0 make a timer and setting
it to 1 makes it a counter. In the counter mode the Timers count external inputs on one of the
input pins. In the timer mode, the timers count FTX clock.

Bit 3 for Timer 0 and bit 7 for Timer 1 are the gate control bits. These bits turns the timer on or
off to allow it to be used to count external events. This bit is cleared to 0 for normal timer
operation. Figure 5 summarizes the timer modes.

Mode 0
13 bit timer
for 8048
compatibility

Mode 1
16-bit
timer/counter

Mode 2
8-bit timer
with auto-
reload.

Mode 3
Two 8-bit
timer/counter
s

Figure 5
Timer mode summaries.

Setting up Timers in C
Example 1: Set timer 0 to roll over every millisecond. Toggle bit P3.2 each time the timer rolls
over. Use polling.

TMOD Register. We can use a 16-bit timer so we want mode 1. We are not using the gated
input and we want the timer to count FT0 Clock so all of the other bits are 0. Set TMOD to
0000 0001B = 01H.

TCON Register. In TCON we will need to set TR0 to 1 to get timer 0 to run and we can
check TF0 to see when Timer 0 overflows.

Timer Register values for overflow. Setting CCKON to 01h will make FTClock =
28.2076MHz/6 = 4.701267 MHz and the processor core will be double clocked. This gives a
period of 0.2127086 µsecond period. To get 1 millisecond = 1000 µseconds we need

counts 4701
dmillisecon

dsmicrosecon 1000
dsmicrosecon 2127086.0

count 1
=x

Since this is a 16-bit timer it overflows when it runs from 65,535 to 65,536. So we want to
initialize the timer to 65,536 – 4701 = 60835 which corresponds to 0EDA3H. So we want to
load TH0 with 0EDH and TL0 with A3H.
//TimerPolled1Khz.c
// This program produces a square wave 2 msec period on
// P3.2 using timer 0 in a polled mode.
#include<REG51ac2.h>

void main(void)
 {CKCON = 0x01; // x2 mode
 TMOD = 0x01; //Timer 0 mode = not gated, internal clock, 16-bit mode
 //For fosc = 28.2076MHz in x2 mode timer is clocked at 28.2076Mhz/6 =
4.701MHz
 // so period is 1/4.701Mhz = .2127086 usec. To get 1 msec we need
 // 1000/.2127086 = 4701 counts. 65536 - 4701 = 60835 = 0xEDA3.
 TH0 = 0xED; //Timer 0 set to ECDC = 60835
 TL0 = 0xA3;
 while(1)
 {TR0 = 1; //Timer 0 run control bit in TCON
 P3 = P3 ^ 4; //Toggle bit 3.2
 TF0 = 0; //Reset timer overflow flag

 while(TF0 == 0); //Wait for time 0 to time out
 TR0 = 0; //Turn off timer 0
 TH0 = 0xED; //Reload timer 0
 TL0 = 0xA3;
 }
 }

Figure 6
The c code for running Timer 0 for 1 millisecond and toggling P3.2.

Example 2: Use timer 0 and timer 1with interrupts to produce a square wave on P3.2. The
square wave should have a 2 msec high time and a 1 msec low time.

TMOD Register. We can use a 16-bit timer so we want mode 1. We are not using the gated
input and we want the timer to count FT0 and FT1 clocks so all of the other bits are 0. Set
TMOD to 0001 0001B = 11H.

TCON Register. In TCON we will need to set TR0 and TR1 to 1 to get timer 0 and time 1
to run.

Timer Register values for overflow. FT0 is running at 28.2076MHz/6 = 4.701267 MHz
which corresponds to a 0.2127086 µsecond period. To get a 1 msec low time we need

counts 4701
dmillisecon

dsmicrosecon 1000
dsmicrosecon 0.2127086

count 1
=x

To get a 2 msec high time we will need a count of 2 x 4701 = 9402 counts.

Since this is a 16-bit timer it overflows when it runs from 65,535 to 65,536. So we want to
initialize the timer to 65,536 – 4701 = 60835 which corresponds to 0EDA3H. So we want to
load TH1 with 0EDH and TL1 with A3H. (Timer 1 will count the 1 msec time) Timer 0
will count 65,536 – 9402 = 56134 which corresponds to 0DB46H. We will make TH0 =
0DBh and TL0 = 046h.

Enabling the interrupt. Timer 0 uses interrupt 1so we need to enable the timer 0 interrupt by
setting ET0 = 1. We must also set the global interrupt enable bit to 1 using EA = 1. These
two enables are in the interrupt enable register IE at location 0A8H. (This is a SFR.)
Interrupt 1 has a vector at location 0BH so we must place a jump to the interrupt service
routine (ISR) at this location. Finally we must write the ISR. For this application the ISR is
going to toggle a bit on P3.2 so it's trivial.

//TimerInts.c
// This program produces a square wave with a 2 msec high time and 1 msec low
// time on P3.2 using timer 0 and timer 1 in an interrupt mode.
#include<REG51ac2.h>

void main(void)
 {CKCON = 0x01; // x2 mode
 TMOD = 0x11; //Timer 0 mode = not gated, internal clock, 16-bit mode
 //Timer 1 mode = not gated, internal clock, 16-bit mode
 //For fosc = 28.2076MHz in x2 mode timer is clocked at 28.2076Mhz/6 =
4.701MHz
 // so period is 1/4.701Mhz = .2127086 usec. To get 1 msec we need
 // 1000/.2127086 = 4701 counts. 65536 - 4701 = 60835 = 0xEDA3.
 // For 2 msec we need 9402 counts. 65536 - 9402 = 55134 = 0xDB46.

 TH0 = 0xDB; //Timer 0 set to DB46 -> 55134
 TL0 = 0x46;

 TH1 = 0xED; //Timer 1 set to EDA3 -> 60835
 TL1 = 0xA3;
 TR0 = 1;
 ET0 = 1; //Timer 0 interrupt enable
 EA = 1; //Global interrupt enable
 while(1);
 }
//
void T0Int() interrupt 1 using 1
 {P3 = P3 | 4; //bit P3.2 to 1
 TR0 = 0; //Turn timer 0 off
 TH1 = 0xDB; //Timer 1 set to DB46 = 55134
 TL1 = 0x46;
 TR1 = 1; //Turn timer 1 on
 ET0 = 0; //Timer 0 interrupt off
 ET1 = 1; //Timer 1 interrupt on
 }
//
void T1Int(void) interrupt 3 using 1
 {P3 = P3 & 0xB1; //bit P3.1 to 0
 TR1 = 0; //Turn timer 1 off
 TH0 = 0xED; //Timer 0 set to EDA3 = 60835
 TL0 = 0xA3;
 TR0 = 1; //Turn timer 0 on
 ET1 = 0; //Timer 1 interrupt off
 ET0 = 1; //Timer 0 interrupt on
 }

Figure 7
The c code for running Timer 1 for 1 msec and Timer 0 for 2 millisecond and toggling P3.2.

This version uses an interrupt with Timer 0 and Timer 1.

Example 3: Use timer 0 with an interrupt to produce a 50 KHz square wave on P3.2. Timer 0 is
used in auto reload mode.

Timer Register values for overflow. FT0Clock is running at 28.2076MHz/6 = 4.701267 MHz
which corresponds to a 0.2127086 µsecond period. A 50 KHz square wave has a 0.02
millisecond period but there are two transitions per cycle so we need a 0.01 millisecond
period for the timer.
To get 0.01 millisecond = 10 µseconds we need

counts 47
dmillisecon

dsmicrosecon 10
dsmicrosecon 2127086.0

count 1
=x

An 8-bit counter can count to 255 so we can use Timer 0 in the 8-bit auto-reload mode with
TH0 loaded initially with 256 – 47 = 209 counts which corresponds to 0D1h.

TMOD Register.
For 8-bit auto-reload we want Timer 0 in mode 2. We are not using the gated input and we
want the timer to count FT0 so all of the other bits are 0. Set TMOD to 0000 0010B = 02H.

TCON Register. In TCON we will need to set TR0 to 1 to get timer 0 to run.

Enabling the interrupt. Timer 0 uses interrupt 1so we need to enable the timer 0 interrupt by
setting ET0 = 1. We must also set the global interrupt enable bit to 1 using EA = 1. These
two enables are in the interrupt enable register IE at location 0A8H. (This is a SFR.)
Interrupt 1 has a vector at location 0BH so we must place a jump to the interrupt service
routine (ISR) at this location. Finally we must write the ISR. For this application the ISR is
going to toggle a bit on P0.0 so it's trivial.

//TimerReload.c
// This program produces a 50KHz square wave on P3.2 using
// Timer 0 in the 8-bit autoreload mode.
// 50KHz corresponds to a 20usec period but interrupt complements
// P3.2 at twice that rate so we need a 10 usec period for T0.
#include<REG51ac2.h>
void SqWave();
void main(void)
 {CKCON = 0x01; // x2 mode
 TMOD = 0x02; //Timer 0 mode = not gated, internal clock, 8-bit, auto
reload
 //For fosc = 28.2076MHz in x2 mode timer is clocked at 28.2076Mhz/6 =
4.701MHz
 // so period is 1/4.701Mhz = .2127086 usec. To get 10 usec we need
 // 10/.2127608 = 47 counts. 256 - 47 = 209 = 0xD1
 TH0 = 0xD1; //Timer 0 high set to 209 for 10 micro-seconds
 TR0 = 1; //Timer 0 run control bit in TCON
 ET0 = 1; //Timer 0 interrupt enable
 EA = 1; //Global interrupt enable
 while(1);
 }
//
//Timer 0 comes in on Interrupt 1.
void SqWave() interrupt 1 using 1
 {P3 = P3 ^ 4; //Exclusive or with 00000100 for bit 3.2
 }

Figure 8
The c code for running Timer 0 in an 8-bit auto reload mode and

toggling P3.2 every 10 microseconds.

