Notes and Reminders:

- Homework 9 is due at the beginning of class on Thursday, November 29. **NO LATE SUBMISSIONS** will be accepted. Project 7 is due by 5pm. No late submissions will be accepted for the project as well.
- Thursday, November 29, has been set aside as a review for the exam. We will go over Homeworks 8 & 9, and answer any questions you have about the material.

The Final Exam will be on **Tuesday, December 4, 9:30am-11:30am**. You may bring one A4 size sheet of paper with notes on **one** side to the exam. You may print out the sheet, but it must be in a 9-point font or larger. E.g., please do not photoreduce or print 4 pages on a side. If you handwrite your notes, they may be as small as you like. You may handwrite notes in the margins of a printout.

The exam will be cumulative and comprehensive. You are expected to be able to read and write code or analyses and designs using concepts from the entire course. These concepts may be presented singly or in combination. Emphasis will be on the material since Exam 2 in Chapters 9.5-9.9 (except 9.7), 10.1-10.7, 14.1-14.2, and 15.1, and covered in lectures and assignments made through Thursday, November 29. This material will comprise about one-half of the exam. You are not responsible for the material on implementing iterators or inserting into a heap. The exam will consist of questions similar to the homework problems, programming projects, and exercises in the textbook.

The following is a list of topics from the last portion of the course that will be emphasized, but it is in no way to be construed as an exclusive list. In addition, previous review sheets should be consulted for earlier topics.

1. Construction and use of doubly-linked lists
2. Construction and use of binary trees: linked implementation (as for code trees and binary search trees), and array implementation (as for heaps); iterative and scan-based algorithms; binary search tree as an ADT.
3. Implementation and complexity of sorting algorithms: selection sort, insertion sort, bubble sort, exchange sort, heap sort, quick sort, and merge sort.