Pseudocode for finding roots of polynomials

We can also improve efficiency considerably by finding the root using a coarse increment, backing up by that increment, and finding it again at a finer increment.

In Pseudocode

Initialize the coarse increment to say .1
Set x to the starting value
Compute fx
Loop until x is > ending value
 {Set xNew to x plus the coarse increment
 Recompute fxNew
 If there is a zero crossing
 {Reduce the coarse increment by a factor of 10
 Set the xNew to the old x plus the new coarse increment
 Recompute fxNew
 Loop while 10 x Coarse increment is greater then the user specified final increment.
 {Loop while there is no zero crossing and x is less than the ending value.
 {Set x = xNew
 Set xNew to x plus the coarse increment.
 Recompute fx and fxNew
 } Decrease the coarse increment by 10
 Set xNew to x plus the coarse increment
 Recompute fxNew
 } Add x and f(x) to the root list
 Reset the coarse increment to .1
 } Add the Coarse increment to x
 Recompute fx
}