ECE 553: TESTING AND TESTABLE DESIGN OF DIGITAL SYSTEMS

Overview: TPG and RC
- Motivation and economics
- Definitions
- Built-in self-testing (BIST) process
- BIST pattern generation (PG)
- BIST response compaction (RC)
- Aliasing definition and example
- Summary

BIST Motivation
- Useful for field test and diagnosis (less expensive than a local automatic test equipment)
- Software tests for field test and diagnosis:
 - Low hardware fault coverage
 - Low diagnostic resolution
 - Slow to operate
- Hardware BIST benefits:
 - Lower system test effort
 - Improved system maintenance and repair
 - Improved component repair
 - Better diagnosis at component level

Costly Test Problems Alleviated by BIST
- Increasing chip logic-to-pin ratio – harder observability
- Increasingly dense devices and faster clocks
- Increasing test generation and application times
- Increasing size of test vectors stored in ATE
- Expensive ATE needed for 1 GHz clocking chips
- Hard testability insertion – designers unfamiliar with gate-level logic, since they design at behavioral level
- In-circuit testing no longer technically feasible
- Shortage of test engineers
- Circuit testing cannot be easily partitioned

Benefits and Costs of BIST with DFT

<table>
<thead>
<tr>
<th>Level</th>
<th>Design and test</th>
<th>Fabrication</th>
<th>Manuf. Test</th>
<th>Manuf. Maintenance test</th>
<th>Diagnosis and repair</th>
<th>Service interruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chips</td>
<td>+ / -</td>
<td>+ / -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Boards</td>
<td>+ / -</td>
<td>+ / -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>System</td>
<td>+ / -</td>
<td>+ / -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Cost increase
- Cost saving
- Cost increase may balance cost reduction

Economics – BIST Costs
- Chip area overhead for:
 - Test controller
 - Hardware pattern generator
 - Hardware response compacter
 - Testing of BIST hardware
- Pin overhead -- At least 1 pin needed to activate BIST operation
- Performance overhead – extra path delays due to BIST
- Yield loss – due to increased chip area or more chips in system because of BIST
- Reliability reduction – due to increased area
- Increased BIST hardware complexity – happens when BIST hardware is made testable
BIST Benefits

- **Faults tested:**
 - Single combinational / sequential stuck-at faults
 - Delay faults
 - Single stuck-at faults in BIST hardware
- **BIST benefits**
 - Reduced testing and maintenance cost
 - Lower test generation cost
 - Reduced storage / maintenance of test patterns
 - Simpler and less expensive ATE
 - Can test many units in parallel
 - Shorter test application times
 - Can test at functional system speed

Definitions

- **BILBO** -- Built-in logic block observer, extra hardware added to flip-flops so they can be reconfigured as an LFSR pattern generator or response compacter, a scan chain, or as flip-flops
- **CUT** -- Circuit-under-test
- **Exhaustive testing** -- Apply all possible 2^n patterns to a circuit with n inputs
- **Irreducible polynomial** -- Boolean polynomial that cannot be factored
- **LFSR** -- Linear feedback shift register, hardware that generates pseudo-random pattern sequence

More Definitions

- **Primitive polynomial** -- Boolean polynomial $p(x)$ that can be used to compute increasing powers $n \cdot x^m$ modulo $p(x)$ to obtain all possible non-zero polynomials of degree less than $p(x)$
- **Pseudo-exhaustive testing** -- Break circuit into small, overlapping blocks and test each exhaustively
- **Pseudo-random testing** -- Algorithmic pattern generator that produces a subset of all possible tests with most of the properties of randomly-generated patterns
- **Signature** -- Any statistical circuit property distinguishing between bad and good circuits
- **TPG** -- Hardware test pattern generator

BIST Architecture

- **Note:** BIST cannot test wires and transistors:
 - From PI pins to Input MUX
 - From POs to output pins

BIST Process

- **Test controller** -- Hardware that activates self-test simultaneously on all PCBs
- **Each board controller activates parallel chip** BIST Diagnosis effective only if very high fault coverage

BILBO – Works as Both a TPG and a RC

- **Built-in Logic Block Observer (BILBO) -- 4 modes:**
 1. Flip-flop
 2. LFSR pattern generator
 3. LFSR response compacter
 4. Scan chain for flip-flops
Complex BIST Architecture

- Testing epoch I:
 - LFSR1 generates tests for CUT1 and CUT2
 - BILBO2 (LFSR3) compacts CUT1 (CUT2)
- Testing epoch II:
 - BILBO2 generates test patterns for CUT3
 - LFSR3 compacts CUT3 response

Bus-Based BIST Architecture

- Self-test control broadcasts patterns to each CUT over bus – parallel pattern generation
- Awaits bus transactions showing CUT’s responses to the patterns: serialized compaction

Pattern Generation

- Store in ROM – too expensive
- Exhaustive
- Pseudo-exhaustive
- Pseudo-random (LFSR) – Preferred method
- Binary counters – use more hardware than LFSR
- Modified counters
- Test pattern augmentation
 - LFSR combined with a few patterns in ROM
 - Hardware diffracter – generates pattern cluster in neighborhood of pattern stored in ROM

Exhaustive Pattern Generation (A Counter)

- Shows that every state and transition works
- For n-input circuits, requires all 2^n vectors
- Impractical for large n (> 20)

Random Pattern Testing

- Bottom: Random Pattern Resistant circuit
- Graphs showing coverage and number of random patterns
 - Top curve: good pattern testing with acceptable fault coverage
 - Bottom curve: unacceptable random pattern testing
Pseudo-Random Pattern Generation

- Standard Linear Feedback Shift Register (LFSR)
 - Normally known as External XOR type LFSR
 - Produces patterns algorithmically – repeatable
 - Has most of desirable random # properties
- Need not cover all \(2^n\) input combinations
- Long sequences needed for good fault coverage

Theory: LFSRs

- **Galois field** (mathematical system):
 - Multiplication by \(x\) same as right shift of LFSR
 - Addition operator is XOR (\(\oplus\))
- **\(T_s\) companion matrix for a standard (external EOR type) LFSR**:
 - 1st column 0, except \(n\)th element which is always 1 (\(X_0\) always feeds \(X_{n-1}\))
 - Rest of row \(n\) – feedback coefficients \(h_i\)
 - Rest is identity matrix \(I\) – means a right shift
- Near-exhaustive (maximal length) LFSR
 - Cycles through \(2^n–1\) states (excluding all-0)
 - 1 pattern of \(n\) 1’s, one of \(n-1\) consecutive 0’s

Standard \(n\)-Stage LFSR

- If \(h_i = 0\), that XOR gate is deleted

Matrix Equation for Standard LFSR

\[
\begin{bmatrix}
X_0(t+1) \\
X_1(t+1) \\
\vdots \\
X_{n-3}(t+1) \\
X_{n-2}(t+1) \\
X_{n-1}(t+1)
\end{bmatrix}
= \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 \\
1 & h_1 & h_2 & \ldots & h_{n-2} & h_{n-1}
\end{bmatrix}
\begin{bmatrix}
X_0(t) \\
X_1(t) \\
\vdots \\
X_{n-3}(t) \\
X_{n-2}(t) \\
X_{n-1}(t)
\end{bmatrix}
\]

\(X(t+1) = T_s X(t)\) \((T_s\) is companion matrix)
Example: External XOR LFSR (contd.)

- Matrix equation:

\[
\begin{bmatrix}
X_0(t+1) \\
X_1(t+1) \\
X_2(t+1)
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{bmatrix} \begin{bmatrix}
X_0(t) \\
X_1(t) \\
X_2(t)
\end{bmatrix}
\]

- Companion matrix:

\[
T_s = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}
\]

- Characteristic polynomial:

\[f(x) = 1 + x + x^3\]

(Read taps from right to left)

- Always have 1 and \(x^n\) terms in polynomial

External XOR LFSR

- Pattern sequence for example LFSR (earlier):

<table>
<thead>
<tr>
<th>(X_0)</th>
<th>(X_1)</th>
<th>(X_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0</td>
<td>1 0 1</td>
<td>1 1 0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>1 1 0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Never repeat an LFSR pattern more than 1 time – Repeats same error vector, cancels fault effect

Generic Modular (Internal XOR) LFSR

- Described by companion matrix \(T_m = T_s^{-1}\)
- Internal XOR LFSR – XOR gates in between D flip-flops
- Equivalent to standard External XOR LFSR
 - With a different state assignment
 - Faster – usually does not matter
 - Same amount of hardware
- \(X(t+1) = T_m X(t)\)
- \(f(x) = [T_m - I X]\)
- Right shift – equivalent to multiplying by \(x\), and then dividing by characteristic polynomial and storing the remainder

Modular LFSR Matrix

\[
\begin{bmatrix}
X_0(t+1) \\
X_1(t+1) \\
X_2(t+1) \\
\vdots \\
X_{n-3}(t+1) \\
X_{n-2}(t+1) \\
X_{n-1}(t+1)
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & h_1 \\
0 & 1 & 0 & \cdots & 0 & h_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & h_{n-3} \\
0 & 0 & 0 & \cdots & 1 & h_{n-2} \\
0 & 0 & 0 & \cdots & 0 & 1 & h_{n-1}
\end{bmatrix} \begin{bmatrix}
X_0(t) \\
X_1(t) \\
X_2(t) \\
\vdots \\
X_{n-3}(t) \\
X_{n-2}(t) \\
X_{n-1}(t)
\end{bmatrix}
\]

Example Modular LFSR

- \(f(x) = 1 + x^2 + x^7 + x^8\)
- Read LFSR tap coefficients from left to right
Primitive Polynomials

- Want LFSR to generate all possible $2^n - 1$ patterns (except the all-0 pattern)
- Conditions for this – must have a primitive polynomial:
 - Monic – coefficient of x^n term must be 1
 - Modular LFSR – all D FF’s must right shift through XOR’s from X_0 through X_1, ..., through X_{n-1}, which must feed back directly to X_0
 - Standard LFSR – all D FF’s must right shift directly from X_{n-1} through X_{n-2}, ..., through X_0, which must feed back into X_{n-1} through XORing feedback network

- Characteristic polynomial must divide the polynomial $1 + x^k$ for $k = 2^n - 1$, but not for any smaller k value
- See Appendix B of book for tables of primitive polynomials
- Following is related to aliasing:
 - If $p(\text{error}) = 0.5$, no difference between behavior of primitive & non-primitive polynomial
 - But $p(\text{error})$ is rarely = 0.5 In that case, non-primitive polynomial LFSR takes much longer to stabilize with random properties than primitive polynomial LFSR

Weighted Pseudo-Random Pattern Generation

- If $p(1)$ at all PIs is 0.5, $p_F(1) = 0.5^8 = \frac{1}{256}$
- Will need enormous # of random patterns to test a stuck-at 0 fault on F - LFSR $p(1) = 0.5$
- We must not use an ordinary LFSR to test this
- IBM – holds patents on weighted pseudo-random pattern generator in ATE

Weighted Pattern Gen.

<table>
<thead>
<tr>
<th>w_1, w_2, Inv.</th>
<th>p (output)</th>
<th>w_3, w_4, Inv.</th>
<th>p (output)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>1/8</td>
<td>1 0 0</td>
<td>1/8</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>1/8</td>
<td>1 0 1</td>
<td>1/8</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>1/8</td>
<td>1 1 0</td>
<td>1/8</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>3/4</td>
<td>1 1 1</td>
<td>15/16</td>
</tr>
</tbody>
</table>

Test Pattern Augmentation

- Secondary ROM – to get LFSR to 100% SAF coverage
 - Add a small ROM with missing test patterns
 - Add extra circuit mode to Input MUX – shift to ROM patterns after LFSR done
 - Important to compact extra test patterns
- Use diffracter:
 - Generates cluster of patterns in neighborhood of stored ROM pattern
 - Transform LFSR patterns into new vector set
 - Put LFSR and transformation hardware in full-scan chain
Response Compaction

- Severe amounts of data in CUT response to LFSR patterns—example:
 - Generate 5 million random patterns
 - CUT has 200 outputs
 - Leads to: 5 million x 200 = 1 billion bits response
 - Uneconomical to store and check all of these responses on chip
 - Responses must be compacted

Definitions

- **Aliasing** – Due to information loss, signatures of good and some bad machines match
- **Compaction** – Drastically reduce # bits in original circuit response – lose information
- **Compression** – Reduce # bits in original circuit response – no information loss – fully invertible (can get back original response)
- **Signature analysis** – Compact good machine response into good machine signature. Actual signature generated during testing, and compared with good machine signature
- **Transition Count Response Compaction** – Count # transitions from 0→1 and 1→0 as a signature

Transition Counting

(a) Logic simulation of good machine and fault a stuck-at-1.

(b) Transition counts of good and failing machines.

Transition Counting Details

- **Transition count:**
 \[
 C(R) = \sum_{i=1}^{m} (t_i \oplus t_{i+1})
 \]
 for all \(m\) primary outputs
- **To maximize fault coverage:**
 - Make \(C(R_0)\) – good machine transition count – as large or as small as possible

LFSR for Response Compaction

- Use cyclic redundancy check code (CRCC) generator (LFSR) for response compacter
- Treat data bits from circuit POs to be compacted as a decreasing order coefficient polynomial
- CRCC divides the PO polynomial by its characteristic polynomial
 - Leaves remainder of division in LFSR
 - Must initialize LFSR to seed value (usually 0) before testing
 - After testing – compare signature in LFSR to known good machine signature
 - Critical: Must compute good machine signature

Example Modular LFSR Response Compacter

- LFSR seed value is “00000”
Polynomial Division

Inputs: \(x^0 \ x^1 \ x^2 \ x^3 \ x^4 \)

Initial State: 0 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 1 0 0 1
0 1 0 0 1
1 1 1 0 1
0 1 0 1 1

Logic Simulation: Remainder = 1 + x^2 + x^3

\[
\begin{align*}
0 & \quad 1 & \quad 0 & \quad 1 & \quad 0 & \quad 0 & \quad 1 \\
0 & \quad x^0 + 1 & \quad x^1 + 0 & \quad x^2 + 0 & \quad x^3 + 0 & \quad x^4 + 0 & \quad x^5 + 0 & \quad x^6 + 1 & \quad x^7 \\
\end{align*}
\]

Symbolic Polynomial Division

\[
x^5 + x^3 + x + 1 = x^2 + 1 + x^7 + x^3 + x^3 + x^2 + x^2 + x^3 + x + 1
\]

Remainder matches that from logic simulation of the response compacter!

Multiple-Input Signature Register (MISR)

- Problem with ordinary LFSR response compacter:
 - Too much hardware if one of these is put on each primary output (PO)
- Solution: MISR – compacts all outputs into one LFSR
 - Works because LFSR is linear – obeys superposition principle
 - Superimpose all responses in one LFSR – final remainder is XOR sum of remainders of polynomial divisions of each PO by the characteristic polynomial

MISR Matrix Equation

\[
\begin{align*}
X_0 (t+1) & = 0 \quad 1 \quad 0 \quad 0 \quad 0 \\
X_1 (t+1) & = 0 \quad 0 \quad 0 \quad 0 \\
\vdots & \quad \vdots \quad \vdots \quad \vdots \quad \vdots \\
X_n (t+1) & = 0 \quad 0 \quad \cdots \quad 0 \quad 1 \\
X_n (t+1) & = 0 \quad 0 \quad \cdots \quad 0 \quad 1 \\
\end{align*}
\]

\[
\begin{align*}
X_0 (t) & \quad X_1 (t) \\
\vdots & \quad \vdots \\
X_n (t) & \quad X_n (t) \\
\end{align*}
\]

\[
\begin{align*}
d_0 (t) & \quad d_1 (t) \\
\vdots & \quad \vdots \\
d_n (t) & \quad d_n (t) \\
\end{align*}
\]

Modular MISR Example

\[
\begin{align*}
X_0 (t+1) & = 0 \quad 1 \quad 0 \quad 1 \\
X_1 (t+1) & = 1 \quad 1 \quad 1 \\
X_2 (t+1) & = 0 \quad 1 \quad 0 \\
\end{align*}
\]

CLOCK

\[
\begin{align*}
01010 \\
D_0 \\
D_1 \\
D_2 \\
D_3 \\
D_4 \\
01010 \\
\end{align*}
\]

Characteristic Polynomial: \(x^3 + x + 1 \)

\[
\begin{align*}
X_0 (t) & \quad X_1 (t) \\
X_2 (t) & \quad X_2 (t) \\
\end{align*}
\]

Multiple Signature Checking

- Use 2 different testing epochs:
 - 1\(^{st}\) with MISR with 1 polynomial
 - 2\(^{nd}\) with MISR with different polynomial
- Reduces probability of aliasing –
 - Very unlikely that both polynomials will alias for the same fault
- Low hardware cost:
 - A few XOR gates for the 2\(^{nd}\) MISR polynomial
 - 2-1 MUX to select between two feedback polynomials
Aliasing Probability

- Aliasing – when bad machine signature equals good machine signature
- Consider error vector $e(n)$ at POs
 - Set to a 1 when good and faulty machines differ at the PO at time t
 - P_{al} aliassing probability
 - $p = \text{probability of } 1 \text{ in } e(n)$
- Aliasing limits:
 - $0 < p \leq \frac{1}{2}, \quad p^k \leq P_{al} \leq (1-p)^k$
 - $\frac{1}{2} \leq p \leq 1, \quad (1-p)^k \leq P_{al} \leq p^k$

Experiment Hardware

- LFSR pattern generator and MISR response compacter – preferred BIST methods
- BIST has overheads: test controller, extra circuit delay, Input MUX, pattern generator, response compacter, DFT to initialize circuit & test the test hardware
- BIST benefits:
 - At-speed testing for delay & stuck-at faults
 - Drastic ATE cost reduction
 - Field test capability
 - Faster diagnosis during system test
 - Less effort to design testing process
 - Shorter test application times

Transition Counting vs. LFSR

- LFSR aliases for f_{sa1}, transition counter for a_{sa1}

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>abc</td>
<td>Good</td>
</tr>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>010</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>111</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transition Count</th>
<th>LFSR</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>[001]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>[101]</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>[001]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>[010]</td>
<td></td>
</tr>
</tbody>
</table>

Summary

Transition Counting vs. LFSR Graph

- Bound for $0 < p < \frac{1}{2}$
- Bound for $\frac{1}{2} < p < 1$
LFSR Fault Coverage Projection

- Fault detection probability by a random number
 \[p(x)\,dx = \text{fraction of detectable faults with detection} \]
 \[\text{probability between } x \text{ and } x + dx \]
 \[p(x) \geq 0 \text{ when } 0 \leq x \leq 1 \]
 \[\int_0^1 p(x)\,dx = 1 \]
- Exist \(p(x)\,dx \) faults with detection probability \(x \)
- Mean coverage of those faults is \(x \int_0^1 p(x)\,dx \)
- Mean fault coverage \(y_n \) of 1st \(n \) vectors:
 \[I(n) = 1 - \int_0^1 (1 - x)^n p(x)\,dx \]
 \[y_n = 1 - I(n) + \frac{n}{\text{total faults}} \] (15.6)

LFSR Fault Coverage & Vector Length Estimation

- Random-fault-detection (RFD) variable:
 - Vector \# at which fault first detected
 - \(w_i \) faults with RFD variable \(i \)
 - So \(p(x) = \frac{N-1}{\sum_{i=1}^N w_i} p_i(x) \)
- \(n \) \# size of sample simulated; \(N \) \# test vectors
- \(W \equiv \sum_{i=1}^N w_i \)
- Method:
 - Estimate random first detect variables \(w_i \) from fault simulator using fault sampling
 - Estimate \(I(n) \) using book Equation 15.8
 - Obtain test length by inverting Equation 15.6 & solving numerically

Additional MISR Aliasing

- MISR has more aliasing than LFSR on single PO
 - Error in CUT output \(d_{ij} \) at \(t_i \), followed by error in output \(d_{ij+h} \) at \(t_{i+h} \), eliminates any signature error if no feedback tap in MISR between bits \(Q_j \) and \(Q_{j+h} \).

Aliasing Theorems

- Theorem 15.1: Assuming that each circuit PO \(d_{ij} \) has probability \(p_j \) of being in error, and that all outputs \(d_{ij} \) are independent, in a \(k \)-bit MISR, \(P_{al} = 1/(2^k) \), regardless of initial condition of MISR. Not exactly true – true in practice.
- Theorem 15.2: Assuming that each PO \(d_{ij} \) has probability \(p_j \) of being in error, where the \(p_j \) probabilities are independent, and that all outputs \(d_{ij} \) are independent, in a \(k \)-bit MISR, \(P_{al} = 1/(2^k) \), regardless of the initial condition.