ECE 553: TESTING AND TESTABLE DESIGN OF DIGITAL SYSTEMS

Built-In Self-Test (BIST) - 2

Motivation

- Complex systems with multiple chips demand elaborate logic BIST architectures
 - BILBO and test / clock system
 - Shorter test length, more BIST hardware
 - STUMPS & test / scan systems
 - Longer test length, less BIST hardware
- Circular Self-Test Path
 - Lowest hardware, lower fault coverage
- Benefits: cheaper system test, Cost: more hardware.
- Must modify fully synthesized circuit for BIST to boost fault coverage
 - Initialization, test point hardware

Overview: Logic BIST

- Motivation
- Built-in Logic Block Observer (BILBO)
- Test / clock systems
- Test / scan systems
- Circular self-test path (CSTP) BIST
- Circuit initialization
- Test point insertion
- Summary

Built-in Logic Block Observer (BILBO)

- Combined functionality of D flip-flop, pattern generator, response compacter, & scan chain
- Reset all FFs to 0 by scanning in zeros

Example BILBO Usage

- SI – Scan In
- SO – Scan Out
- Characteristic polynomial: $1 + x + \ldots + x^n$
- CUTs A and C: BILBO1 is MISR, BILBO2 is LFSR
- CUT B: BILBO1 is LFSR, BILBO2 is MISR

BILBO Serial Scan Mode

- $B1 B2 = \text{“00”}$
- Dark lines show enabled data paths
BILBO LFSR Pattern Generator Mode

- \(B_1 B_2 = "01" \)

BILBO in D FF (Normal) Mode

- \(B_1 B_2 = "10" \)

BILBO in MISR Mode

- \(B_1 B_2 = "11" \)

Test / Clock System Example

- New fault set tested every clock period
- Shortest possible pattern length
- 10 million BIST vectors, 200 MHz test / clock
- Test Time = \(\frac{10,000,000}{200 \times 10^6} = 0.05 \) s
- Shorter fault simulation time than test / scan

Test / Scan Systems

- STUMPS architecture
- Alternative test per scan systems
- Advantages and limitations of test/scan systems

STUMPS: Architecture and example

- \(SR_1 \ldots SR_n = 25 \) full-scan chains, each 200 bits
- 500 chip outputs, need 25 bit MISR (not 5000 bits)
STUMPS

- **Test procedure:**
 1. Scan in patterns from LFSR into all scan chains (200 clocks)
 2. Switch to normal functional mode and clock 1 x with system clock
 3. Scan out chains into MISR (200 clocks) where test results are compacted
 - Overlap Steps 1 & 3

- **Requirements:**
 - Every system input is driven by a scan chain
 - Every system output is caught in a scan chain or drives another chip being sampled

Alternative Test / Scan Systems

- **New fault tested during 1 clock vector with a complete scan chain shift**
- **Significantly more time required per test than test / clock**
 - **Advantage:** Judicious combination of scan chains and MISR reduces MISR bit width
 - **Disadvantage:** Much longer test pattern set length, causes fault simulation problems

- **Input patterns – time shifted & repeated**
 - Become correlated – reduces fault detection effectiveness
 - Use XOR network to phase shift & decorrelate

Test / Scan System

- **New fault tested during 1 clock vector with a complete scan chain shift**
- **Significantly more time required per test than test / clock**
 - **Advantage:** Judicious combination of scan chains and MISR reduces MISR bit width
 - **Disadvantage:** Much longer test pattern set length, causes fault simulation problems

- **Input patterns – time shifted & repeated**
 - Become correlated – reduces fault detection effectiveness
 - Use XOR network to phase shift & decorrelate

BILBO vs. STUMPS vs. ATE

- **LSSD:** Level-sensitive scan design
- **ATE rate:** 325 MHz
 - **System clock rate:** 1 GHz
 - **P** = # patterns
 - **CP** = clock period = 10^{-9} s
 - **L** = max. scan chain length

 - **Self-test speed**
 - $k = \frac{\text{ATE speed}}{\text{LSSD tester speed}} = 3.07692$

 - Test times – BILBO: $P \times CP$
 - STUMPS: $P \times L \times CP$

 - External test & ATE: 307 x longer than BILBO
 - STUMPS: 100 x longer than BILBO

 - Due to extra scan chain shifting

Circular Self-Test Path (CSTP) BIST

- **Combine pattern generator and response compacter into a single device**
- Use synthesized hardware flip-flops configured as a circular shift register
 - Non-linear mathematical BIST system
 - Superposition does not hold
 - Flip-flop self-test cell – XOR’s D with Q state from previous FF in CSTP chain
- **MISR characteristic polynomial:** $f(x) = x^n + 1$
- Hard to compute fault coverage

CSTP System
Examples of CSTP Systems

• CSTP BIST for 4 ASICs at Lucent Technologies:
 ▪ Tested everything on 3 of the 4, except for:
 1. Input/Output buffers and Input MUX
 ▪ BIST overheads: logic – 20 %, chip area – 13 %
 ▪ Stuck-at fault coverage – 92 %

Circuit Initialization

• Full-scan BIST – shift in scan chain seed before starting BIST
• Partial-scan BIST – critical to initialize all FFs before BIST starts
 ▪ Otherwise we clock X’s into MISR and signature is not unique and not repeatable
• Discover initialization problems by:
 1. Modeling all BIST hardware
 2. Setting all FFs to X’s
 3. Running logic simulation of CUT with BIST hardware

Circuit Initialization (continued)

• If MISR finishes with BIST cycle with X’s in signature, Design-for-Testability initialization hardware must be added
• Add MS (master set) or MR (master reset) lines on flip-flops and excite them before BIST starts
• Otherwise:
 1. Break all cycles of FF’s
 2. Apply a partial BIST synchronizing sequence to initialize all FF’s
 3. Turn on the MISR to compact the response

Isolation from System Inputs

• Must isolate BIST circuits and CUT from normal system inputs during test:
 ▪ Input MUX
 ▪ Blocking gates –
 1. AND gate – apply 0 to 2nd AND input, block normal system input
• Note: Neither all of the Input MUX nor the blocking gate hardware can be tested by BIST
 ▪ Must test externally or with Boundary Scan (covered later)

Test Point Insertion

• BIST does not detect all faults:
 ▪ Test patterns not rich enough to test all faults
 ▪ Modify circuit after synthesis to improve signal controllability
 ▪ Observability addition – Route internal signal to extra FF in MISR or XOR into existing FF in MISR

Summary

• Logic BIST system architecture --
 ▪ Advantages:
 1. Higher fault coverage
 2. At-speed test
 3. Less system test, field test & diagnosis cost
 ▪ Disadvantage: Higher hardware cost
 ▪ Architectures: BILBO, test / clock, test / scan
 ▪ Needs DFT for initialization, and test points