Answer

• 17.10

The instrument for displaying the spectrum of a signal is known as:

○ (a) oscilloscope

○ (b) spectrogram

○ (c) spectrum analyzer

○ (d) Fourier spectrometer

Answer

Problems
Section 17.2 Trigonometric Fourier Series

• 17.1

Evaluate each of the following functions and see if it is periodic. If periodic, find its period.

○ (a)

\[f(t) = \cos \pi t + 2 \cos 3\pi t + 3 \cos 5\pi t \]

○ (b)

\[y(t) = \sin t + 4 \cos 2\pi t \]

○ (c)

\[g(t) = \sin 3t \cos 4t \]

○ (d)

\[h(t) = \cos^2 t \]

○ (e)

\[z(t) = 4.2 \sin(0.4\pi t + 10^\circ) + 0.8 \sin(0.6\pi t + 50^\circ) \]
- (f)
 \[p(t) = 10 \]
- (g)
 \[q(t) = e^{-\pi t} \]

Answer

- 17.2

Using MATLAB, synthesize the periodic waveform for which the Fourier trigonometric Fourier series is

\[f(t) = \frac{1}{2} - \frac{4}{\pi^2} \left(\cos t + \frac{1}{9} \cos 3t + \frac{1}{25} \cos 5t + \cdots \right) \]

- 17.3

Give the Fourier coefficients \(a_0, a_n, \) and \(b_n \) of the waveform in Fig. 17.47. Plot the amplitude and phase spectra.

Figure 17.47
For Prob. 17.3.

Answer

- 17.4

Find the Fourier series expansion of the backward sawtooth waveform of Fig. 17.48. Obtain the amplitude and phase spectra.

Figure 17.48
For Probs. 17.4 and 17.66.
Page 801
For Prob. 17.8.

- 17.9

Determine the Fourier coefficients \(a_n\) and \(b_n\) of the first three harmonic terms of the rectified cosine wave in Fig. 17.52.

![Figure 17.52](image1)

For Prob. 17.9.

- Answer

- 17.10

Find the exponential Fourier series for the waveform in Fig. 17.53.

![Figure 17.53](image2)

For Prob. 17.10.

- 17.11

Obtain the exponential Fourier series for the signal in Fig. 17.54.

![Figure 17.54](image3)

For Prob. 17.11.

- Answer

- *17.12

A voltage source has a periodic waveform defined over its period as

\[v(t) = 120t(2\pi - t) \text{ V}, \quad 0 < t < 2\pi \]

Find the Fourier series for this voltage.

- 17.13
Design a problem to help other students better understand obtaining the Fourier series from a periodic function.

- Answer

- 17.14

 Find the quadrature (cosine and sine) form of the Fourier series

 \[f(t) = 7.5 + \sum_{n=1}^{\infty} \frac{37.5}{n^3 + 1} \cos \left(2nt + \frac{n\pi}{4}\right) \]

- 17.15

 Express the Fourier series

 \[f(t) = 10 + \sum_{n=1}^{\infty} \frac{4}{n^2 + 1} \cos 10nt + \frac{1}{n^3} \sin 10nt \]

 - (a) in a cosine and angle form,

 - (b) in a sine and angle form.

- Answer

Page 802

- 17.16

 The waveform in Fig. 17.55(a) has the following Fourier series:

 \[v_1(t) = \frac{1}{2} - \frac{4}{\pi^2} \left(\cos \pi t + \frac{1}{9} \cos 3\pi t \right. \]

 \[\left. + \frac{1}{25} \cos 5\pi t + \cdots \right) \text{ V} \]

 Obtain the Fourier series of \(v_2(t) \) in Fig. 17.55(b).