We have used pins only for output, but it is also possible to use a pin for input.

Pin 7 is connected to a stall sensor. When both motors are on and the wheels are turning the sensor sends a low voltage to pin 7. If the motors are on and BOTH wheels are stuck (not turning) the sensor sends a high voltage to pin 7. A low voltage is interpreted as a binary 0, while a high voltage is a binary 1.

We can refer to the value at pin 7 using the PBASIC bit name for the pin, IN7:

```plaintext
LOW RtMotor 'Motor init.
LOW LtMotor
PAUSE 100
PULSOUT RtMotor, 2400 'Start your engines...
PULSOUT LtMotor, 2400 'engines...
DO
  DEBUG HOME, DEC IN7
  PAUSE 50
LOOP
```

This program continuously displays the state of the stall sensor (0 – running, 1 – stalled) in a loop.

It is preferable to label the stall sensor pin:

```plaintext
Stall   PIN 7
```

```plaintext
stuck VAR Bit 'Declare var
DO
  stuck = Stall
  'WE ARE STUCK - DO SOMETHING!!!
LOOP
```

Robots (and computer programs) seem intelligent because they can respond differently to different events. The standard computer program decision structure is an IF-THEN-ELSE-ENDIF block:

```plaintext
IF (stuck = 1) THEN
  'Code to stop motors goes here
ELSE
  'Code for full ahead goes here
ENDIF
```
Lecture 4 – Making Decisions

IF-THEN-ELSE-ENDIF

- If the *condition* is TRUE the THEN block of code is executed. If FALSE the code in the ELSE block is executed. The parentheses around the *condition* are optional but recommended.
- The comparison operators that can be used in a condition are: =, !>, >, <, >=. The operators compare for equality, inequality, greater than, less than, greater than or equal, and less than or equal respectively.

Lecture 4 – Making Decisions

IF-THEN-ELSE-ENDIF

- Condition negation use the NOT operator. Compound conditions can be constructed using AND, OR, and XOR operators:

  ```
  IF ((stall=0)AND(count<=10)) THEN
    PULSOUT RtMotor, 2400
    PULSOUT LtMotor, 2400
  ENDIF
  ```
- Note that an ELSE code block is optional and that multiple statements are permitted in a THEN (or ELSE) block.

Lecture 4 – Making Decisions

IF-THEN-ELSE-ENDIF

- If the Scribbler gets stuck, you will normally want to take some action. This code shuts the motors down for two seconds:

  ```
  IF (stuck = 1) THEN
    PULSOUT RtMotor, 2000
    PULSOUT LtMotor, 2000
    FREQOUT SPEAKER, 500, 440
    PAUSE 1500
  ELSE
    PULSOUT RtMotor, 2600
    PULSOUT LtMotor, 2600
  ENDIF
  ```

Lecture 4 – Making Decisions

Random Behavior

- To program random behavior, we need a *random number generator*. There is one built into the Scribbler:

  ```
  maxval CON   20 '# 0 to 19
  seed    CON   $AAAA 'RNG seed
  dice    VAR   Word
  dice = seed
  DO
    RANDOM dice
    DEBUG DEC dice//maxval, CR
    PAUSE 500
  LOOP
  ```

Lecture 4 – Making Decisions

Assignment

- Program the Scribbler so that when it becomes stuck, it should back up a short, random distance, turn through a random angle and then proceed forward. When not stuck it should go forward in a straight line.
- Add LED flashes and sounds as desired ...