MATLAB Functions for Hypothesis Testing

One Sample z-test

The MATLAB function:

\[
[h, p, ci, zval] = ztest(x, m, sigma, alpha, tail, dim)
\]

performs a z-test of the null hypothesis \(H_0: \mu = m \).

The array \(x \) is assumed to contain data from a normal population with known standard deviation \(\sigma \). The test is performed at significance level \(\alpha \). The string argument \(\text{tail} \) must be either 'both', 'right' or 'left' indicating that the alternate hypothesis is either two-tailed (\(\mu \neq m \)), upper-tailed (\(\mu > m \)), or lower-tailed (\(\mu < m \)). If \(x \) is a matrix the test is performed on each column of the matrix, the \(\text{dim} \) argument may be used to indicate that the test be performed over a different dimension of the matrix. Arguments \(\alpha, \text{tail} \) and \(\text{dim} \) are optional. Default values of \(\alpha \) and \(\text{tail} \) are 0.05 and 'both'.

Return value \(h \) is 0 if the null hypothesis is accepted or 1 if it is rejected. \(p \) is the P-value. \(ci \) is a 100(1-\(\alpha \))% confidence interval. \(zval \) is the value of the test statistic.

One Sample or Paired Data t-test

The MATLAB function:

\[
[h, p, ci, stats] = ttest(x, m, alpha, tail)
\]

performs a one sample t-test of the null hypothesis \(H_0: \mu = m \).

The MATLAB function:

\[
[h, p, ci, stats] = ttest(x, y, alpha, tail)
\]

performs a paired-data t-test of the null hypothesis \(H_0: \mu_x = \mu_y \).

Input arguments \(\alpha \) and \(\text{tail} \) are as described under One Sample z-test above.

Return arguments \(h, p \) and \(ci \) are as described under One Sample z-test above. \(\text{stats} \) is a structure contains the members: \(tstat \) – the value of the test statistic, \(df \) – the degrees of freedom, and \(sd \) – the estimated population standard deviation.

Two Sample t-test

The MATLAB function:

\[
[h, p, ci, stats] = ttest2(x, y, alpha, tail, vartype, dim)
\]

performs a two-sample unpaired t-test of the null hypothesis \(H_0: \mu_x = \mu_y \). By default (or when \(vartype = \text{'equal'} \)) the test is performed assuming equal population variances. Set \(vartype \) to \(\text{'unequal'} \) to perform the tests assuming unequal variances. Note that \(vartype = \text{'unequal'} \) corresponds to the case discussed in class.

Other tests

Refer to the documentation for the \(\text{vartest} \) and the \(\text{vartest2} \) functions for tests regarding population variances.