EE470 – Electronic Communication Theory

Exam I

Open text, closed notes.

To receive any partial credit, you must show all work and you must work neatly!!!

Date: September 24, 2014

Name: _________________________________

1. [30%] Problems related to signals and transforms:

 (a) [6%] Simplify the following expression: \(\left(\frac{j \omega - 3}{\omega^2 + 9} \right) \delta(\omega) \)

 (b) [6%] Evaluate the following integral: \(\int_{-2}^{2} (t^3 + 4) \delta(1-t) dt \)

 (c) [6%] Find the energy spectral density function, \(\Psi_s(f) \), of the energy signal \(g(t) = 10u(t) - 10u(t-1) \).

 (d) [6%] Find the auto-correlation function, \(\psi(\tau) \), of the signal in part (c).

 (e) [6%] How much energy is contained in the signal in part (c)?
2. [22%] The frequency response of a certain communication channel can be modeled as

\[H_c(f) = \frac{10}{\sqrt{1 + (f/a)^2}} e^{-j2\pi(f/a)^2} \text{ where } a = 1000 \text{ Hz} \]

(a) [6%] What is the phase response, \(\theta(f) \), of this channel?

(b) [6%] What are the phase delay \(t_d \) and group delay \(t_g \) of this channel at \(f = 2000 \text{ Hz} \)?

(c) [6%] A filter is to be used at the receiver input that eliminates all channel distortion. What is the frequency response of a filter that will accomplish this?

(d) [4%] This channel causes what type of distortion? (Circle the correct answer.)

i. amplitude
ii. phase
iii. both amp and phase
3. [28%] Power signal, \(x(t) \), has the following auto-correlation function

\[
R_x(\tau) = 10 \text{sinc}(2000 \tau)
\]

This signal is passed through a filter with transfer function \(H(f) = e^{-j2\pi f/1000} \Pi(f/500) \).

(a) [7%] How much power, \(P_x \), is contained in the input signal?

(b) [7%] What is the input signal power spectral density function, \(S_x(f) \)?

(c) [7%] What is the auto-correlation function, \(R_y(\tau) \), of the output signal? Hint: Sketches of \(|H(f)| \) and \(S_x(f) \) may prove helpful.

(d) [7%] How much power, \(P_y \), is contained in the output signal?
4. [20%] Answer the following questions by circling the correct answer.

(a) [2%] One of the purposes of modulation is to __________.
 i. allow multiplexing ii. improve signal quality

(b) Periodic signals are typically ______ signals.
 i. energy ii. power

(c) \[\int_{-\infty}^{\infty} \varphi(t) \delta(t-10) dt = \]
 i. \(\varphi(10) \) ii. \(\varphi(10) \delta(t-10) \)

(d) If all of the \(b_n \) (sine) coefficients in the trigonometric Fourier series are zero, the corresponding function is __________.
 i. even ii. odd

(e) Parseval's theorem allows us to determine the signal power that lies within a certain ____ interval.
 i. time ii. frequency

(f) Decreasing the width of a pulse causes a corresponding ______ in the signal bandwidth.
 i. decrease ii. increase

(g) Multiplication by a high frequency sinusoid is also known as _________________.
 i. modulation ii. convolution

(h) A distortionless filter has a constant phase response over the signal bandwidth.
 i. TRUE ii. FALSE

(i) Nonlinear distortion will typically cause spreading (dispersion) in the ______ domain.
 i. time ii. frequency

(j) The power within a frequency band can be obtained by integrating the signal ______ over the frequency band.
 i. autocorrelation ii. power spectral density