2.30) There are several possible solutions.

2.34)
 a) \(h(t) = u(t) - u(t - T_s) \)

 b) \(H(f) = 2T_s \text{sinc}(2\pi T_sf) e^{-j\pi T_s f} \)

 The first zero is at \(f = 1/T_s \). An ideal low pass would filter out all frequencies above \(1/(2T_s) \).

2.35)
 a) There are frequency components at 0.5, 1, 1.5, 2, 3, 3.5, 4, 4.5, 5.5, 6, 6.5, 7, 8, 8.5, 9, and 9.5 Hz in the received waveform.

 b) \(s_1(t) = a_0 \cos(2\pi t) \), \(s_2(t) = a_0 \cos(\pi t) + 2a_0 \cos(2\pi t) \)

 c) \(\tilde{s}_1(t) = a_0 \cos(1.9\pi t) \)

2.2)

NRZ - M

NRZ - L
The inverter can also be located at the other input of the XOR. An XNOR could also be used instead of an XOR.