4.1)
A) Number of pairs = 666
\[f_R = 825 \text{ MHz} + n(30 \text{ kHz}) \quad 1 \leq n \leq 666 \]
B) \[f_F = 870 \text{ MHz} + n(30 \text{ kHz}) \quad 1 \leq n \leq 666 \]
C) Total pairs = 832

D) The binary representations in the text are actually one's complement representations instead of two's complement representations, but that has no affect on the resulting answer.
\[f_R = 825 \text{ MHz} + n(30 \text{ kHz}) \quad -32 \leq n \leq 0 \]
\[f_F = 870 \text{ MHz} + n(30 \text{ kHz}) \quad -32 \leq n \leq 0 \]

The complete set (all channels) of center frequencies is given by:
\[f_R = 825 \text{ MHz} + n(30 \text{ kHz}) \quad -32 \leq n \leq 799 \]
\[f_F = 870 \text{ MHz} + n(30 \text{ kHz}) \quad -32 \leq n \leq 799 \]

4.2)
A) \(Q = 2k \)

B) \[S/I = \frac{1}{(2k-1)^\nu + (2k+1)^\nu} \]

4.3)
\((S/I)_1 = 19.62 \text{ dB} \)
\((S/I)_2 = 19.12 \text{ dB}, \) Decrease of 0.46 dB

4.4)
The number of channel sets is equal to the cluster size.
\(K_{\text{cluster}} = 3, \) \(N_{\text{cell}} = N_{\text{chan}}/K_{\text{cluster}} = 222 \)

4.5)
A) Adjacent channels should be placed in adjacent cells.

B) In the worst case the desired signal and the interferer are both at distance \(R \) even though they are in different cells: \(S/I = \alpha \)
4.6) In the worst case the desired signal and the two interferers are both at distance R:
\[
\frac{S}{I} = \alpha/2
\]

4.8)
\[
k_{\text{cluster}} = 19, \quad \hat{D} = \sqrt{k_{\text{cluster}}} = 4.359
\]
The resulting Q and S/I are: $Q = 7.55, \quad S/I = 20.31 \text{ dB}$

4.11)
\[
\rho = \frac{3 N_{\text{chan}}}{Q^2 A_{\text{cell}}}
\]

4.12)
\[
\begin{align*}
\text{A)} & \quad CT = \frac{\rho A_{\text{sys}} CBS (6 S/I)^{2/\nu}}{3 N_{\text{chan}}} \\
\text{B)} & \quad \text{CT is inversely proportional to } N_{\text{chan}}. \\
& \quad \text{CT is directly proportional to } \rho. \\
& \quad \text{CT is fractionally proportional to } S/I.
\end{align*}
\]
\[
\text{C)} \quad \text{As } \nu \text{ increases } \rho \text{ increases. From problem 4.11: } \quad \rho = \frac{3 N_{\text{chan}}}{(6 S/I)^{2/\nu} A_{\text{cell}}}
\]

4.13)
From Fig 4.14 the distance to the second-tier interferers is $D_2 = \sqrt{3}D$ where D is the distance to the first-tier interferers. Let $(S/I)_2$ be the signal-to-interference ratio with second-tier interferers included.
\[
(S/I)_2 = \frac{1}{6} Q^4 \left(\frac{3^{\nu/2}}{3^{\nu/2} + 1} \right) = \frac{1}{6} Q^4 \cdot \frac{9}{10} = \frac{9}{10} (S/I)_1 = (S/I)_1 - 0.457 \text{ dB}
\]
The distance to third-tier interferers is $D_3 = 2D$.
\[
(S/I)_3 = \frac{1}{6} Q^4 \left(\frac{12^{\nu/2}}{12^{\nu/2} + 4^{\nu/2} + 3^{\nu/2}} \right) = \frac{1}{6} Q^4 \frac{144}{169} = \frac{144}{169} (S/I)_1
\]
\[
(S/I)_3 = (S/I)_1 - 0.695 \text{ dB} = (S/I)_2 - 0.238 \text{ dB}
\]
For $K_{cluster} = 1$ then the worst-case distance to the first and second-tier interferers is $D_1 = (\sqrt{3}/2) R$ and $D_2 = 2 R$. The signal-to-interference ratio is then -10.4 dB. To achieve a signal-to-interference ratio of 17 dB a processing gain of 27.4 dB is required.

With 30 dB attenuation for four of the six interferers, $(S/I)_1 = (1/2.004) Q^v = 23.425$ dB. For ideal sectoring, $(S/I)_1 = (1/2) Q^v = 23.434$ dB. For an omni-directional antenna (no sectoring), $(S/I)_1 = (1/6) Q^v = 18.663$ dB.